Flicker Light-Induced Retinal Vasodilation is Lower in Alzheimer’s Disease

Mojtaba Golzan (Research Fellow-Alzheimer’s Australia)
Department of Clinical Medicine, Macquarie University

Ms. Dana Georgevsky (Research)
A/Prof Greg Savage (Neuropsychology)
Dr. Carolyn Orr (Neurologist)
Prof. Stuart Graham (Ophthalmologist)
Financial Disclosure

Golzan, M. – holds a research fellowship with Alzheimer's Australia Dementia Research Foundation.

Others- None
The pathological process of Alzheimer’s disease (AD) is thought to begin many years before the diagnosis of AD dementia.

The “preclinical” phase of AD would provide a critical opportunity for therapeutic intervention.

There is active research around the globe in search of suitable early biomarkers for Dementia. These include blood, CSF and several imaging modalities.

What is missing?

Whether these biomarkers are primary or secondary effects
Introduction—new perspective?

• A growing body of evidence suggests that pre-symptomatic Alzheimer’s disease (AD) may be detected in sensory organs.

• In animal studies, Impairment in the olfactory system, for example, has been shown to precede cognitive impairment in AD by a substantial period. Specifically, there is studies showing that denervation of the Olfactory bulb leads to decreased beta amyloid deposition in the brain [1].

• The same may hold true with current evidence suggesting that neurodegenerative activity in the retina precedes that of in the brain [2]. (beta amyloid deposition in the retina at 2.5 months vs brain at 5 months)

• Fortunately, retina and the brain share similar physiological and pathological properties. In fact it’s the only organ in which its internal structure can be visualised. Thus, the retina provides a “window” to visualize the cerebral circulation and study AD-related changes.

We need more AD-specific biomarkers

Study 1
136 demented patients with AD and 290 age-gender-race-matched controls. Patients with narrower venular caliber, decreased arteriolar and venular fractal dimension and increased arteriolar and venular tortuosity were more likely to have AD [1].

Study 2
AD was diagnosed in 519 and vascular dementia in 73 participants. Larger venular calibers were associated with an increased risk of dementia. The association remained significant after adjustment for stroke and cardiovascular risk factors. Smaller arteriolar calibers were also associated with an increased risk of vascular dementia, yet only when adjusted for venular calibers [2].

Lack of Specificity and Sensitivity

Dynamic Analysis

Indices measureable:

1. Pulse Wave Velocity (Measure of Vessel Stiffness)
2. Pulsatility Index
3. Retinal Vasodilation response
Equipment

- We use Dynamic Vessel Analyzer (DVA) to capture dynamic properties of retinal vessels
- DVA records at 25 Hz.
- We then filter the recordings and extract the amplitude of the pulsations
• Retinal vasodilation is a normal physiological response to flicker light stimulation.
• This phenomenon is recognised as a function of increased retinal ganglion cell activity and nitric oxide (NO) release to provide additional oxygen to meet the increased requirements of metabolically active cells in the retina.
• To measure Endothelial Dysfunction (Edf), DVA uses the Illumination light of the fundus camera which is reflected by the retina and blood vessels.
Endothelial Dysfunction
• 42 subjects including 19 diagnosed with AD (10 male, age 72±6 yrs) and 23 healthy controls (12 male, age 67±10 yrs) were included.

• Following initial eye assessment, pupils of all subjects were dilated with Tropicamide 1%. Intraocular Pressure (IOP) was measured using Goldman tonometry.

• Resting calibers of selected retinal vessel segments were recorded in measurement units (MU).

• Maximum percentage dilations during flicker stimulation were calculated from baseline calibers using the Dynamic Vessel Analyzer.
Results

The arterial and venous response to flicker induced light showed a significantly lower vasodilation in the AD group compared with controls:

Artery: 2.8±1% vs. 3.7±1% (p<0.01)
Vein: 2.7±0.6% vs. 3.6±1% (p<0.05)
What's Next

Determine Specificity of Retinal Measurements

Control → MCI → AD
Non-AD Dementia
What’s Next

• Recruited 100 pre-AD patients (on-going collaborative study with Prof. Ralph Martins)

• MRI and FDG PET scans along with all retinal scans

• Longitudinal study
What’s Next

Animal Studies (APP/PS1)

• Measure dynamic properties of retinal vessels in conjunction with brain degeneration
• Measure beta amyloid deposition in the retina vs. brain and then Compare with vascular properties
Conclusions

• Dynamic changes of retinal vessels can be used as a biomarker for preclinical AD

• Endothelial dysfunction along with increased mechanical force on vessels (increased pulsatility) may play a significant role in the early stages of AD.

• The co-morbidity with other diseases needs further investigation. e.g; a few studies have shown that AD patients have a 3 fold increase in glaucoma development.

• We are investigating whether this is a primary or secondary phenomenon
Acknowledgments

Prof. Stuart L Graham
Prof. Ralph Martins
Prof. Greg Savage
Dr. Carolyn Orr
Prof. Roger Chung
Ms. Dana Gerogevsky

Funding

Alzheimer's Australia Dementia Research Foundation
NHMRC
Hillcrest Foundation
Cooper Medical Foundation