Risk Factor Reduction and Dementia Prevalence

Deborah E. Barnes, PhD, MPH
Associate Professor
Psychiatry and Epidemiology & Biostatistics
University of California, San Francisco
San Francisco VA Medical Center
The Impending Dementia Epidemic
Global Dementia Prevalence

2010

36 million

58% low/middle income

2050

115 million

70% low/middle income

Societal Costs

- >$600 billion in 2010
 - 1% GDP
 - 70% W. Europe & N. America
- U.S. costs
 - 2010: $159-$215 billion
 - 2040: $379-$511 billion
- *Current medications do not change the disease course*

Hurd et al., NEJM 2013
Delaying Dementia Onset Could Prevent Millions of Cases

Brookmeyer et al., Alzheimer’s & Dementia, 2007
Risk Factors & Prevention Strategies
Vascular Risk Factors:
“What’s good for the heart is good for the brain.”
Vascular Disease and Dementia

- 80% Alzheimer’s or vascular
 - Most ‘mixed’ at autopsy
 - Vascular + Alzheimer’s ➔ earlier, more severe
- Risk factors for vascular disease are modifiable/treatable
 - Preventing/treating vascular risk factors may prevent/delay onset of dementia

Ligthart et al. 2010, Vascular Health and Risk Management
Diabetes and Dementia

- Diabetes → 40% higher risk
 - Esp. vascular dementia
- Impact of diabetes treatment
 - ADVANCE trial: >11,000, intensive vs. standard
 - No difference in cognitive decline
 - Slightly higher dementia risk with intensive
- Hypoglycemia → increased risk
- *Treat, but don’t overtreat*

Hypertension and Dementia

- Inconsistent association
 - Mid-life hypertension: 60% higher risk
 - Late-life hypertension: inconsistent
 - Late-life hypotension: higher risk

- Impact of hypertension treatment
 - Cochrane: 4 RCTs, ~16,000, tx vs. placebo
 - OR=0.89 (95% CI: 0.74, 1.07)

- Treatment may delay dementia onset

Power et al. 2011, Epidemiology; Ligthart et al., 2010 Vasc Health Risk Management; McGuinness et al. 2009, Cochrane Database Syst Rev
Obesity and Dementia

- Inconsistent association
 - Mid-life obesity: 60% higher risk
 - Late-life obesity: inconsistent/lower risk
 - Late-life underweight/weight loss: higher risk

- Impact of weight loss
 - Intentional weight loss in obese, mid-life → ↑ cognitive function

- Benefits of weight loss in late life unclear

Profenno et al. 2010, Biol Psychiatr; Siervo et al. 2011, Obesity Rev
Mental Health Risk Factors
Depression and Dementia

- Depression → 90% higher risk
 - True risk factor or early symptom?
- Mid-life vs. late-life depression
 - Mid-life only: 20% higher
 - Late-life only: 70% higher, esp AD
 - Mid-life + late-life: 80% higher, esp VaD
- Impact of treatment
 - Improved cognitive function, still below normal
 - Delayed dementia onset?

Byers & Yaffe, Nat Rev Neurol 2011; Ownby et al., Arch Gen Psychiatr 2006; Barnes et al., Arch Gen Psychiatr 2012; Nebes et al. J Psychiatr Res 2003; Reynolds et al., Arch Gen Psychiatr 2011
Lifestyle Risk Factors
Exercise and Dementia

- Observational studies
 - ↑ aerobic fitness → ↓ cognitive decline
 - ↑ physical activity → ↓ dementia
 - Physical inactivity → 80% higher risk

- Randomized, controlled trials
 - Aerobic/resistance → ↑ cognitive function
 - Home-based exercise → ↓ cognitive decline

Aerobic Exercise Increases Hippocampal Volume

Erickson et al., PNAS 2010
Mental Activity and Dementia

- Observational studies
 - Higher education, IQ, occupation, mental activity, brain size → ↓ dementia
 - Low education → 60% higher risk
 - **Cognitive reserve hypothesis**

- Randomized, controlled trials
 - Mental activity → ↑cognitive domain trained

Cognitive Training Improves Specific Domain Trained

2,832 adults age ≥65

* * * *

Ball et al., JAMA 2002; Willis et al., JAMA 2006
Cognitive Training Improves Specific Domain Trained

2,832 adults age ≥65

Training Group

- Memory
- Reasoning
- Speed

*p<0.05

Ball et al., JAMA 2002; Willis et al., JAMA 2006
Cognitive Training Improves Specific Domain Trained

2,832 adults age ≥65

Ball et al., JAMA 2002; Willis et al., JAMA 2006

Training Group

- Memory
- Reasoning
- Speed

*p<0.05
Cognitive Training Improves Specific Domain Trained

2,832 adults age ≥65

Ball et al., JAMA 2002; Willis et al., JAMA 2006
Tai Chi & Social Activity
Increase Brain Volume

N=120 Shanghai elders

Mortimer et al., J Alz Dis 2012
The Mental Activity and eXercise (MAX) Trial

Healthy, Inactive Elders with Self-Reported Cognitive Decline
N=126

Posit Science Intervention
N=63

- Aerobic Intervention
 N=32

- Stretching Control
 N=31

Educational DVD Control
N=63

- Aerobic Intervention
 N=31

- Stretching Control
 N=32
The MAX Trial

- Significant improvement in cognitive and physical function over 12 weeks
- No differences between groups
- Amount/variety of activity may be more important than type

Barnes et al., JAMA Intern Med 2013
Benefits of Physical, Mental & Social Activity in Dementia

- Physical activity \rightarrow ↑ physical function, quality of life
- Cognitive stimulation \rightarrow ↑ cognitive function, well-being
- Dancing \rightarrow ↓ problematic behaviors, ↑ enjoyment

Potter et al., Int J Geriatr Psychiatr 2011; Aguirre et al., Ageing Res Reviews 2012; Guzman-Garcia et al., Int J Geriatric Soc 2012
Smoking and Dementia

• Early studies:
 • Smoking ➔ lower dementia
 • Many funded by tobacco industry

• Newer studies:
 • Current smoking ➔ 60% higher risk
 • Secondhand smoke + vascular dz ➔ 3X higher
 • Quitting smoking has many health benefits and may lower dementia risk

Anstey et al., 2007, Am J Epidemiol; Cataldo et al., 2010, J Alzheimer Dis; Barnes et al., 2009, Am J Epidemiol
Potential Impact of Risk Factor Reduction
What if we could change risk factor prevalence?

- Population attributable risks (PARs)
 - Tools to estimate impact of risk factor reduction
 - Used to guide public health and public policy
 - Take into account risk factor prevalence and strength of association
PARs for AD, Worldwide

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk (95% CI)</th>
<th>Population Prevalence</th>
<th>PAR % (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low education</td>
<td>1.6 (1.4, 1.9)</td>
<td>40%</td>
<td>19% (12-26%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.6 (1.2, 2.2)</td>
<td>27%</td>
<td>14% (4-25%)</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>1.8 (1.2, 2.8)</td>
<td>18%</td>
<td>13% (3-24%)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.9 (1.6, 2.3)</td>
<td>13%</td>
<td>11% (7-15%)</td>
</tr>
<tr>
<td>Mid-life hyperten.</td>
<td>1.6 (1.2, 2.2)</td>
<td>9%</td>
<td>5% (1-10%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.4 (1.2, 1.7)</td>
<td>6%</td>
<td>2% (1-4%)</td>
</tr>
<tr>
<td>Mid-life obesity</td>
<td>1.6 (1.3, 1.9)</td>
<td>3%</td>
<td>2% (1-3%)</td>
</tr>
<tr>
<td>Combined max</td>
<td></td>
<td>51%</td>
<td></td>
</tr>
</tbody>
</table>

Barnes & Yaffe, Lancet Neurol, 2011
PARs for AD, Worldwide

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk (95% CI)</th>
<th>Population Prevalence</th>
<th>PAR % (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low education</td>
<td>1.6 (1.4, 1.9)</td>
<td>40%</td>
<td>19% (12-26%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.6 (1.2, 2.2)</td>
<td>27%</td>
<td>14% (4-25%)</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>1.8 (1.2, 2.8)</td>
<td>18%</td>
<td>13% (3-24%)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.9 (1.6, 2.3)</td>
<td>13%</td>
<td>11% (7-15%)</td>
</tr>
<tr>
<td>Mid-life hyperten.</td>
<td>1.6 (1.2, 2.2)</td>
<td>9%</td>
<td>5% (1-10%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.4 (1.2, 1.7)</td>
<td>6%</td>
<td>2% (1-4%)</td>
</tr>
<tr>
<td>Mid-life obesity</td>
<td>1.6 (1.3, 1.9)</td>
<td>3%</td>
<td>2% (1-3%)</td>
</tr>
<tr>
<td>Combined max</td>
<td></td>
<td></td>
<td>51%</td>
</tr>
</tbody>
</table>

Source: Barnes & Yaffe, Lancet Neurol, 2011
PARs for AD, Worldwide

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk (95% CI)</th>
<th>Population Prevalence</th>
<th>PAR % (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low education</td>
<td>1.6 (1.4, 1.9)</td>
<td>40%</td>
<td>19% (12-26%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.6 (1.2, 2.2)</td>
<td>27%</td>
<td>14% (4-25%)</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>1.8 (1.2, 2.8)</td>
<td>18%</td>
<td>13% (3-24%)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.9 (1.6, 2.3)</td>
<td>13%</td>
<td>11% (7-15%)</td>
</tr>
<tr>
<td>Mid-life hyperten.</td>
<td>1.6 (1.2, 2.2)</td>
<td>9%</td>
<td>5% (1-10%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.4 (1.2, 1.7)</td>
<td>6%</td>
<td>2% (1-4%)</td>
</tr>
<tr>
<td>Mid-life obesity</td>
<td>1.6 (1.3, 1.9)</td>
<td>3%</td>
<td>2% (1-3%)</td>
</tr>
<tr>
<td>Combined max</td>
<td></td>
<td></td>
<td>51%</td>
</tr>
</tbody>
</table>

Barnes & Yaffe, Lancet Neurol, 2011
PARs for AD, Worldwide

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Relative Risk (95% CI)</th>
<th>Population Prevalence</th>
<th>PAR % (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low education</td>
<td>1.6 (1.4, 1.9)</td>
<td>40%</td>
<td>19% (12-26%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>1.6 (1.2, 2.2)</td>
<td>27%</td>
<td>14% (4-25%)</td>
</tr>
<tr>
<td>Physical inactivity</td>
<td>1.8 (1.2, 2.8)</td>
<td>18%</td>
<td>13% (3-24%)</td>
</tr>
<tr>
<td>Depression</td>
<td>1.9 (1.6, 2.3)</td>
<td>13%</td>
<td>11% (7-15%)</td>
</tr>
<tr>
<td>Mid-life hyperten.</td>
<td>1.6 (1.2, 2.2)</td>
<td>9%</td>
<td>5% (1-10%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>1.4 (1.2, 1.7)</td>
<td>6%</td>
<td>2% (1-4%)</td>
</tr>
<tr>
<td>Mid-life obesity</td>
<td>1.6 (1.3, 1.9)</td>
<td>3%</td>
<td>2% (1-3%)</td>
</tr>
<tr>
<td>Combined max</td>
<td></td>
<td></td>
<td>51%</td>
</tr>
</tbody>
</table>

Barnes & Yaffe, Lancet Neurol, 2011
No. AD Cases Potentially Prevented, Worldwide

Barnes & Yaffe, Lancet Neurol, 2011
No. AD Cases Potentially Prevented, Worldwide

- No. AD Cases Prevented, Worldwide

- Barnes & Yaffe, Lancet Neurol, 2011
Regional Differences in Dementia and Risk Factor Prevalence

<table>
<thead>
<tr>
<th>Region</th>
<th>Dementia Prevalence</th>
<th>No/Low Education</th>
<th>Smoking</th>
<th>Physical Inactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>6.8-8.5</td>
<td>13-42%</td>
<td>20-31%</td>
<td>43%</td>
</tr>
<tr>
<td>Europe</td>
<td>7.3</td>
<td>18%</td>
<td>34%</td>
<td>35%</td>
</tr>
<tr>
<td>Asia</td>
<td>5.0-6.9</td>
<td>38-55%</td>
<td>23-34%</td>
<td>17%</td>
</tr>
<tr>
<td>Africa</td>
<td>2.1-5.9</td>
<td>49-70%</td>
<td>18-23%</td>
<td>27%</td>
</tr>
<tr>
<td>World</td>
<td></td>
<td>40%</td>
<td>29%</td>
<td>31%</td>
</tr>
</tbody>
</table>

* Women: ↑ physical inactivity, ↑ no/low education, ↓ smoking

Regional Differences in Dementia and Risk Factor Prevalence

<table>
<thead>
<tr>
<th>Region</th>
<th>Dementia Prevalence</th>
<th>No/Low Education</th>
<th>Smoking</th>
<th>Physical Inactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>6.8-8.5</td>
<td>13-42%</td>
<td>20-31%</td>
<td>43%</td>
</tr>
<tr>
<td>Europe</td>
<td>7.3</td>
<td>18%</td>
<td>34%</td>
<td>35%</td>
</tr>
<tr>
<td>Asia</td>
<td>5.0-6.9</td>
<td>38-55%</td>
<td>23-34%</td>
<td>17%</td>
</tr>
<tr>
<td>Africa</td>
<td>2.1-5.9</td>
<td>49-70%</td>
<td>18-23%</td>
<td>27%</td>
</tr>
<tr>
<td>World</td>
<td>40%</td>
<td>29%</td>
<td>31%</td>
<td></td>
</tr>
</tbody>
</table>

* Women: ↑ physical inactivity, ↑ no/low education, ↓ smoking

Regional Differences in Dementia and Risk Factor Prevalence

<table>
<thead>
<tr>
<th>Region</th>
<th>Dementia Prevalence</th>
<th>No/Low Education</th>
<th>Smoking</th>
<th>Physical Inactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Americas</td>
<td>6.8-8.5</td>
<td>13-42%</td>
<td>20-31%</td>
<td>43%</td>
</tr>
<tr>
<td>Europe</td>
<td>7.3</td>
<td>18%</td>
<td>34%</td>
<td>35%</td>
</tr>
<tr>
<td>Asia</td>
<td>5.0-6.9</td>
<td>38-55%</td>
<td>23-34%</td>
<td>17%</td>
</tr>
<tr>
<td>Africa</td>
<td>2.1-5.9</td>
<td>49-70%</td>
<td>18-23%</td>
<td>27%</td>
</tr>
<tr>
<td>World</td>
<td></td>
<td>40%</td>
<td>29%</td>
<td>31%</td>
</tr>
</tbody>
</table>

Women: ↑ physical inactivity, ↑ no/low education, ↓ smoking

Summary & Conclusions
Summary & Conclusions

- Dementia prevalence expected to triple over next 40 years
 - High societal costs, no effective treatments
- Up to half of dementia may be attributable to modifiable/treatable risk factors
 - Physical inactivity, low education, smoking, depression, vascular risk factors
- Lifestyle interventions promising
 - Delaying onset
 - Improving function and well-being
Challenges & Next Steps

- Promote change at a societal level
 - National programs to increase educational attainment and physical activity
 - Promote smoking cessation
 - Treatment of cardiovascular risk factors and depression
- Address the needs of currently affected
 - Programs to maintain function and quality of life
 - Reduce caregiver stress
It Takes A Village...

- Kristine Yaffe, MD
- Colleagues:
 - Amy Byers, Sei Lee, Laura Middleton, Rebecca Sudore, Rachel Whitmer, Brie Williams
- Research Staff
 - Wanda Reiman, Jacy Leonardo, Ellie Dayton (Shirgul), Gina Poelke, Wendy Santos-Modesitt, Matthew Beristianos
- Volunteers
 - Yani Leyva, Serena Galloway, Gabrielle Gotta, Ann Tran, Todd Rising, Andrew Bloch
- Summer Interns
 - Sierra Ford, William Goodson, Omar Meziab
- Programming assistance
 - Katharine Kirby
Thank You!

- **Funding:**
 - National Institute on Aging (K01 AG024069)
 - Alzheimer’s Assn (IIRG-06-27306)
 - UCSF Department of Medicine Bridge Funds
 - VA Health Services Research
 - Community Foundation Sonoma County
 - Department of Defense
 - Bechtel Foundation
 - NARSAD

- My physical and mental activity training team